python功能特色分享

Python已经成为较受欢迎的程序设计语言之一。自从2004年以后,python的使用率呈线性增长。2011年1月,它被TIOBE编程语言排行榜评为2010年度语言。自从20世纪90年代初Python语言诞生至今,它已被逐渐广泛应用于系统管理任务的处理和Web编程。 在使用Python多年以后,我偶然发现了一些我们过去不知道的功能和特性。一些可以说是非常有用,但却没有充分利用。考虑到这一点,我编辑了一些你应该了解的Python功能特色。 Python技术文章2019-01-02 |python培训 |python培训,python

Python已经成为较受欢迎的程序设计语言之一。自从2004年以后,python的使用率呈线性增长。2011年1月,它被TIOBE编程语言排行榜评为2010年度语言。自从20世纪90年代初Python语言诞生至今,它已被逐渐广泛应用于系统管理任务的处理和Web编程。

在使用Python多年以后,我偶然发现了一些我们过去不知道的功能和特性。一些可以说是非常有用,但却没有充分利用。考虑到这一点,我编辑了一些你应该了解的Python功能特色。

python功能特色分享

带任意数量参数的函数

你可能已经知道了Python允许你定义可选参数。但还有一个方法,可以定义函数任意数量的参数。

优先,看下面是一个只定义可选参数的例子:

def function(arg1=””, arg2=””):

print “arg1: {0}”.format(arg1)

print “arg2: {0}”.format(arg2)

function(“Hello”, “World”)

# prints args1: Hello

# prints args2: World

function()

# prints args1:

# prints args2:

现在,让我们看看怎么定义一个可以接受任意参数的函数。我们利用元组来实现。

def foo(*args):

# just use “*” to collect all remaining arguments into a tuple

numargs = len(args)

print “Number of arguments: {0}”.format(numargs)

for i, x in enumerate(args):

print “Argument {0} is: {1}”.format(i, x)

foo()

# Number of arguments: 0

foo(“hello”)

# Number of arguments: 1

# Argument 0 is: hello

foo(“hello”, “World”, “Again”)

# Number of arguments: 3

# Argument 0 is: hello

# Argument 1 is: World

# Argument 2 is: Again

程序圆补充:更一般的函数定义方式是def fun(*args,**kwargs),可以在许多Python源码中发现这种定义,其中*args表示任何多个无名参数,它本质是一个元组tuple;**kwargs表示关键字参数,它本质上是一个字典dict。

使用Glob()查找文件

大多Python函数有着长且具有描述性的名字。但是命名为glob()的函数你可能不知道它是干什么的除非你从别处已经熟悉它了。

它像是一个更强大版本的listdir()函数。它可以让你通过使用模式匹配来搜索文件。

import glob

# get all py files

files = glob.glob(‘*.py’)

print files

# Output

# [‘arg.py’, ‘g.py’, ‘shut.py’, ‘test.py’]

你可以像下面这样查找多个文件类型:

import itertools as it, glob

def multiple_file_types(*patterns):

return it.chain.from_iterable(glob.glob(pattern) \

for pattern in patterns)

for filename in multiple_file_types(“*.txt”, “*.py”):

# add as many filetype arguements

print filename

# output

# =========#

# test.txt

# arg.py

# g.py

# shut.py

# test.py

如果你想得到每个文件的绝对路径,你可以在返回值上调用realpath()函数:

import itertools as it, glob, os

def multiple_file_types(*patterns):

return it.chain.from_iterable(glob.glob(pattern) \

for pattern in patterns)

for filename in multiple_file_types(“*.txt”, “*.py”):

# add as many filetype arguements

realpath = os.path.realpath(filename)

print realpath

# output

#=========#

# C:\xxx\pyfunc\test.txt

# C:\xxx\pyfunc\arg.py

# C:\xxx\pyfunc\g.py

# C:\xxx\pyfunc\shut.py

# C:\xxx\pyfunc\test.py

调试

下面的例子使用inspect模块。该模块用于调试目的时是非常有用的,它的功能远比这里描述的要多。

这篇文章不会覆盖这个模块的每个细节,但会展示给你一些用例。

import logging, inspect

logging.basicConfig(level=logging.INFO,

format=’%(asctime)s %(levelname)-8s %(filename)s:%(lineno)-4d: %(message)s’,

datefmt=’%m-%d %H:%M’,

)

logging.debug(‘A debug message’)

logging.info(‘Some information’)

logging.warning(‘A shot across the bow’)

def test():

frame, filename, line_number, function_name, lines, index = \

inspect.getouterframes(inspect.currentframe())[1]

print(frame, filename, line_number, function_name, lines, index)

test()

# Should print the following (with current date/time of course)

# 10-19 19:57 INFO test.py:9 : Some information

# 10-19 19:57 WARNING test.py:10 : A shot across the bow

# (, ‘C:/xxx/pyfunc/magic.py’, 16, ”, [‘test()\n’], 0)

生成唯一ID

在有些情况下你需要生成一个唯一的字符串。我看到很多人使用md5()函数来达到此目的,但它确实不是以此为目的。

其实有一个名为uuid()的Python函数是用于这个目的的。

import uuid

result = uuid.uuid1()

print result

# output => various attempts

# 9e177ec0-65b6-11e3-b2d0-e4d53dfcf61b

# be57b880-65b6-11e3-a04d-e4d53dfcf61b

# c3b2b90f-65b6-11e3-8c86-e4d53dfcf61b

你可能会注意到,即使字符串是唯一的,但它们后边的几个字符看起来很相似。这是因为生成的字符串与电脑的MAC地址是相联系的。

为了减少重复的情况,你可以使用这两个函数。

import hmac, hashlib

key = ‘1’

data = ‘a’

print hmac.new(key, data, hashlib.sha256).hexdigest()

m = hashlib.sha1()

m.update(“The quick brown fox jumps over the lazy dog”)

print m.hexdigest()

# c6e693d0b35805080632bc2469e1154a8d1072a86557778c27a01329630f8917

# 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

序列化

你曾经需要将一个复杂的变量存储在数据库或文本文件中吧?你不需要想一个奇特的方法将数组或对象格转化为式化字符串,因为Python已经提供了此功能。

import pickle

variable = [‘hello’, 42, [1, ‘two’], ‘apple’]

# serialize content

file = open(‘serial.txt’, ‘w’)

serialized_obj = pickle.dumps(variable)

file.write(serialized_obj)

file.close()

# unserialize to produce original content

target = open(‘serial.txt’, ‘r’)

myObj = pickle.load(target)

print serialized_obj

print myObj

# output

# (lp0

# S’hello’

# p1

# aI42

# a(lp2

# I1

# aS’two’

# p3

# aaS’apple’

# p4

# a.

# [‘hello’, 42, [1, ‘two’], ‘apple’]

这是一个原生的Python序列化方法。然而近几年来JSON变得流行起来,Python添加了对它的支持。现在你可以使用JSON来编解码。

import json

variable = [‘hello’, 42, [1, ‘two’], ‘apple’]

print “Original {0} – {1}”.format(variable, type(variable))

# encoding

encode = json.dumps(variable)

print “Encoded {0} – {1}”.format(encode, type(encode))

# deccoding

decoded = json.loads(encode)

print “Decoded {0} – {1}”.format(decoded, type(decoded))

# output

# Original [‘hello’, 42, [1, ‘two’], ‘apple’] –

# Encoded [“hello”, 42, [1, “two”], “apple”] –

# Decoded [u’hello’, 42, [1, u’two’], u’apple’] –

这样更紧凑,而且较重要的是与JavaScript和许多其他语言兼容。然而对于复杂的对象,其中的一些信息可能丢失。

压缩字符

当谈起压缩时我们通常想到文件,比如ZIP结构。在Python中也可以压缩长字符:

import zlib

string = “”” Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Nunc ut elit id mi ultricies

adipiscing. Nulla facilisi. Praesent pulvinar,

sapien vel feugiat vestibulum, nulla dui pretium orci,

non ultricies elit lacus quis ante. Lorem ipsum dolor

sit amet, consectetur adipiscing elit. Aliquam

pretium ullamcorper urna quis iaculis. Etiam ac massa

sed turpis tempor luctus. Curabitur sed nibh eu elit

mollis congue. Praesent ipsum diam, consectetur vitae

ornare a, aliquam a nunc. In id magna pellentesque

tellus posuere adipiscing. Sed non mi metus, at lacinia

augue. Sed magna nisi, ornare in mollis in, mollis

sed nunc. Etiam at justo in leo congue mollis.

Nullam in neque eget metus hendrerit scelerisque

eu non enim. Ut malesuada lacus eu nulla bibendum

id euismod urna sodales. “””

print “Original Size: {0}”.format(len(string))

compressed = zlib.compress(string)

print “Compressed Size: {0}”.format(len(compressed))

decompressed = zlib.decompress(compressed)

print “Decompressed Size: {0}”.format(len(decompressed))

# output

# Original Size: 1022

# Compressed Size: 423

# Decompressed Size: 1022

注册Shutdown函数

有可模块叫atexit,它可以让你在脚本运行完后立马执行一些代码。

假如你想在脚本执行结束时测量一些基准数据,比如运行了多长时间:

import atexit

import time

import math

def microtime(get_as_float=False):

if get_as_float:

return time.time()

else:

return ‘%f %d’ % math.modf(time.time())

start_time = microtime(False)

atexit.register(start_time)

def shutdown():

global start_time

print “Execution took: {0} seconds”.format(start_time)

atexit.register(shutdown)

# Execution took: 0.297000 1387135607 seconds

# Error in atexit._run_exitfuncs:

# Traceback (most recent call last):

# File “C:\Python27\lib\atexit.py”, line 24, in _run_exitfuncs

# func(*targs, **kargs)

# TypeError: ‘str’ object is not callable

# Error in sys.exitfunc:

# Traceback (most recent call last):

# File “C:\Python27\lib\atexit.py”, line 24, in _run_exitfuncs

# func(*targs, **kargs)

# TypeError: ‘str’ object is not callable

打眼看来很简单。只需要将代码添加到脚本的较底层,它将在脚本结束前运行。但如果脚本中有一个致命错误或者脚本被用户终止,它可能就不运行了。

当你使用atexit.register()时,你的代码都将执行,不论脚本因为什么原因停止运行。

Python教程

零基础python培训需要学多久?

2021-5-19 20:38:01

Python教程

python哪个培训机构更好?

2021-5-20 2:38:07

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
今日签到
有新私信 私信列表
搜索